Matrix decompositions in quantum optics: Takagi/Autonne, Bloch–Messiah/Euler, Iwasawa, and Williamson

Author:

Houde Martin1ORCID,McCutcheon Will2ORCID,Quesada Nicolás1ORCID

Affiliation:

1. Département de génie physique, École Polytechnique de Montréal, Montréal, QC H3T 1J4, Canada

2. Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

In this tutorial, we summarize four important matrix decompositions commonly used in quantum optics, namely the Takagi/Autonne, Bloch–Messiah/Euler, Iwasawa, and Williamson decompositions. The first two of these decompositions are specialized versions of the singular-value decomposition when applied to symmetric or symplectic matrices. The third factors any symplectic matrix in a unique way in terms of matrices that belong to different subgroups of the symplectic group. The last one instead gives the symplectic diagonalization of real, positive definite matrices of even size. While proofs of the existence of these decompositions exist in the literature, we review explicit constructions to implement these decompositions using standard linear algebra packages and functionalities such as singular-value, polar, Schur, and QR decompositions, and matrix square roots and inverses.

Funder

Ministere de l’Economie et de l’Innovation du Quebec

European Research Council Starting Grant

Natural Sciences and Engineering Research Council of Canada

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3