Knockdown of lysyl oxidase like 1 inhibits the proliferation and pro-fibrotic effects of transforming growth factor-β1-induced hypertrophic scar fibroblasts

Author:

Ying Mengxia1,Chen Yan2,Yuan Bo1

Affiliation:

1. Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo City, Zhejiang Province 315020, China.

2. Department of Dermatology, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province 315040, China.

Abstract

The excessive healing response during wound repair can result in hypertrophic scars (HS). Lysyl oxidase like 1 (LOXL1) has been reported to be associated with fibrosis via targeting transforming growth factor β1 (TGF-β1) signaling. This study aimed to investigate the effect of LOXL1 on HS formation. The expression of LOXL1 in HS tissues and TGF-β1-induced HS-derived fibroblasts (HSFs) was detected via reverse transcription quantitative PCR and Western blot. LOXL1 was silenced in HSFs using transfection with short hairpin RNA (shRNA), then wound healing process including cell proliferation, cell cycle distribution, migration, and extracellular matrix (ECM) deposition along with Smad expression were measured by cell counting kit-8, EdU staining, flow cytometry, transwell, immunofluorescence, and Western blot assays. LOXL1 was upregulated in HS tissues and TGF-β1-induced HSFs. Knockdown of LOXL1 inhibited proliferation and migration but promoted cell cycle G0/G1 phase arrest in TGF-β1-induced HSFs; it increased expression of cyclin D1, CDK4, MMP2, MMP9, COL1A1, COL1A2, fibronectin, COL3A1, α-SMA, but decreased expression of p27, and the phosphorylation of Smad2 and Smad3 caused by TGF-β1 were also blocked by LOXL1 silencing. Silence of LOXL1 could effectively inhibit TGF-β1-induced proliferation, migration, and ECM deposition in HSFs via inactivating Smad pathway. Targeting LOXL1 may have future therapeutic implications for HS treatment.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3