Cardioprotective effect of fingolimod against calcium paradox–induced myocardial injury in the isolated rat heart

Author:

Alatrag Fatma1,Amoni Matthew1,Kelly-Laubscher Roisin23,Gwanyanya Asfree1

Affiliation:

1. Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa.

2. Department of Pharmacology and Therapeutics, The College of Medicine and Health, University College Cork, Ireland.

3. Department of Biological Sciences, Faculty of Science, University of Cape Town, Rondebosch 7700, Cape Town, South Africa.

Abstract

Fingolimod (FTY720) inhibits Ca2+-permeable, Mg2+-sensitive channels called transient receptor potential melastatin 7 (TRPM7), but its effects on Ca2+ paradox (CP) – induced myocardial damage has not been evaluated. We studied the effect of FTY720 on CP-induced myocardial damage and used other TRPM7 channel inhibitors nordihydroguaiaretic acid (NDGA) and Mg2+ to test if any effect of FTY720 was via TRPM7 inhibition. Langendorff-perfused Wistar rat hearts were treated with FTY720 or NDGA and subjected to a CP protocol consisting of Ca2+ depletion followed by Ca2+ repletion. Hearts of rats pre-treated with MgSO4 were also subjected to CP. Hemodynamic parameters were measured using an intraventricular balloon, and myocardial infarct size was quantified using triphenyltetrazolium chloride stain. TRPM7 proteins in ventricular tissue were detected using immunoblot analysis. FTY720, but not NDGA, decreased CP-induced infarct size. Both FTY720 and NDGA minimized the CP-induced elevation of left ventricular end-diastolic pressure, but only FTY720 ultimately improved ventricular developed pressure. Mg2+ pre-treatment had no effect on CP-induced infarct size, nor hemodynamic parameters during CP, nor the level of TRPM7 protein expression in ventricular tissue. Overall, FTY720 attenuated CP-induced myocardial damage, with potential therapeutic implications on Ca2+-mediated cardiotoxicity; however, the cardioprotective mechanism of FTY720 seems to be unrelated to TRPM7 channel modulation.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3