Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens

Author:

Miron Joshua,Ben-Ghedalia Daniel

Abstract

The ruminal bacteria Fibrobacter succinogenes strains S85 and BL2 were grown in monocultures or in coculture with strain D1 of Butyrivibrio fibrisolvens, and the solubilization of ryegrass and alfalfa cell walls (CW) and digestion of CW monosaccharides were measured. Fibrobacter succinogenes monocultures and cocultures with B. fibrisolvens D1 degraded 58–69% of ryegrass CW, solubilizing 67–78% of CW glucose, 65–71% of CW xylose, 69–75% of hemicellulose, and 68–77% of total CW monosaccharides. When grown on alfalfa CW, those cultures degraded 28–39% of alfalfa CW, solubilizing 42–58% of CW glucose, 30–36% of CW xylose, and 37–45% of hemicellulose. With respect to both substrates, F. succinogenes strains solubilized CW carbohydrates better than did B. fibrisolvens D1. Complementary interaction between B. fibrisolvens D1 and the F. succinogenes strains was identified with respect to the utilization of some solubilized carbohydrates, but not with respect to the extent of CW solubilization, which was determined mainly by the F. succinogenes strains. For both substrates, utilization of solubilized cellulose by F. succinogenes monocultures was high (96–98%), whereas that of hemicellulose was lower (24–26% in ryegrass and 49–50% in alfalfa). Under scanning electron microscopy, F. succinogenes bacterial cells attached to and colonized on CW particles were characterized by the appearance of protuberant surface structures that we have identified as "polycellulosome complexes." Key words: cell wall monosaccharides, ryegrass, alfalfa, ruminal bacteria, Fibrobacter succinogenes, Butyrivibrio fibrisolvens.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3