Author:
Hart Stephen C.,Firestone Mary K.,Paul Eldor A.
Abstract
A litter-bag technique was used to measure decay rates and assess changes in organic and inorganic constituents of ponderosa pine (Pinusponderosa Laws.) needle litter during decomposition over a 2-year period in old- and young-growth forests in the Sierra Nevada of California. Rates of mass loss were among the lowest reported for temperate and boreal forests, with annual decomposition constants of about 0.08 and 0.18 year−1 for the old- and young-growth forests, respectively. Apparently, the temporal separation of warm temperatures and moist conditions found in Mediterranean-type climates severely limits decomposition in these coniferous forests. In the old-growth forest, comparison of estimates of tree nutrient uptake with net releases of nutrients from fine litter during their 1st year of decomposition suggests that recent litter fall potentially acts as a significant source of P, Mg, and K for tree uptake in this forest; in contrast, recently fallen litter acts as a net sink for N, S, and Ca. Despite initially lower indices of litter quality for litter originating from the old–growth relative to the young–growth forest, no significant difference in decomposition rates of these two litter age-classes was found when placed at either site. This result does not support the hypothesis that decreases in decomposition rates during forest development are driven by decreases in the quality of litter fall.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献