Does Mixing Tree Species Affect Water Storage Capacity of the Forest Floor? Laboratory Test of Pine-Oak and Fir-Beech Litter Layers

Author:

Ilek AnnaORCID,Szostek MałgorzataORCID,Mikołajczyk Anna,Rajtar Marta

Abstract

During the last decade, tree species mixing has been widely supported as a silvicultural approach to reduce drought stress. However, little is known on the influence of tree species mixing on physical properties and the water storage capacity of forest soils (including the forest floor). Thus, the study aimed to analyze the effect of mixing pine needles and oak leaves and mixing fir needles and beech leaves on hydro-physical properties of the litter layer during laboratory tests. We used fir-beech and pine-oak litter containing various shares of conifer needles (i.e., 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%) to determine the influence of the needle admixture on bulk density, total porosity, macroporosity, water storage capacity, the amount of water stored in pores between organic debris and the degree of saturation of mixed litter compared to broadleaf litter (oak or beech). We found that the admixture of fir needles increased the bulk density of litter from 7.9% with a 5% share of needles to 55.5% with a 50% share (compared to pure beech litter), while the share of pine needles < 40% caused a decrease in bulk density by an average of 3.0–11.0% (compared to pure oak litter). Pine needles decreased the water storage capacity of litter by about 13–14% with the share of needles up to 10% and on average by 28% with the 40 and 50% shares of pine needles in the litter layer. Both conifer admixtures reduced the amount of water stored in the pores between organic debris (pine needles more than fir needles).

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3