Trypsin-susceptible cell surface characteristics of Streptococcus sanguis

Author:

Oakley J. David,Taylor K. Grant,Doyle R. Jennings

Abstract

The adherence of Streptococcus sanguis to saliva-coated hydroxylapatite was markedly reduced by treatment of the cells with trypsin. In Scatchard plots of adherence data, protease-treated S. sanguis did not exhibit the characteristic positive slopes, suggesting that trypsin prevented cooperative interactions between the cells and artificial pellicle. Trypsin also reduced the tendency of S. sanguis to bind to hexadecane and to octyl-Sepharose. When sodium dodecyl sulfate was used to elute S. sanguis from columns of octyl-Sepharose, it was observed that the elution profiles of trypsin-treated cells were more complex than those of control cells. Water and salts were incapable of removing the cells from octyl-Sepharose. The results suggest that adherence to saliva-coated hydroxylapatite, binding to hexadecane and to octyl-Sepharose depend on trypsin-susceptible cell surface molecules.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bacterial survival and adhesion for formulating new oral probiotic foods;Critical Reviews in Food Science and Nutrition;2019-09-26

2. Prevention and treatment of biofilms by hybrid- and nanotechnologies;International Journal of Nanomedicine;2013-08

3. Bacterial cell attachment, the beginning of a biofilm;Journal of Industrial Microbiology & Biotechnology;2007-07-06

4. Contribution of the hydrophobic effect to microbial infection;Microbes and Infection;2000-04

5. Modification of surface properties of oral streptococci by α-1,6 glucans;Colloids and Surfaces B: Biointerfaces;1997-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3