Specific interactions of pancreatic amylase at acidic pH. Amylase and the major protein of the zymogen granule membrane (GP-2) bind to immobilized or polymerized amylase

Author:

Jacob Michèle,Lainé Jean,LeBel Denis

Abstract

Regulated secretory proteins are thought to be sorted in the trans-Golgi network towards the secretory granule via acidic aggregation. In the exocrine pancreas, amylase is one of the major zymogens. It is a basic protein of pI 8.6 and does not precipitate in acidic conditions. To identify the mechanism by which amylase aggregates in the acidic cisternæ of the pancreatic trans-Golgi network, we have developed an in vitro model in which amylase was fixed to plastic microtiter plates. The fixed amylase was probed with two ligands: amylase itself and GP-2, the major protein of the zymogen granule membrane. Biotinylated amylase bound to fixed amylase in a strict pH-dependent manner with optimal binding between pH 5.0 and 5.7. The affinity of binding was in the nanogram range (Kd ≈ 20.0 ng/mL) at pH 5.5. Acid binding of amylase was not reversible by incubation at neutral pH, nor could it be displaced by native amylase. GP-2 binding to fixed amylase was also pH dependent with optimal binding between pH 5.0 and 5.7. As for amylase, it was not reversible by incubation at neutral pH. GP-2 binding sites on fixed amylase appeared to be different from those of biotinylated amylase. While native and biotinylated amylase did not bind to GP-2, polymerized amylase precipitated GP-2 at acidic pH. Taken together these data suggest that slight modifications are sufficient to reveal on the amylase molecule binding sites for GP-2 and for amylase itself. These new binding capacities acquired at acidic pH could be involved in the cascade of reactions that lead to the in vivo formation of the immature secretory granule.Key words: regulated secretion, sorting, granules, trans-Golgi network.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3