Effects of temperatures on growth, physiological, and antioxidant characteristics in Houttuynia cordata

Author:

LI Yu-Syuan,LIN Kuan-Hung,WU Chun-Wei,CHANG Yu-Sen

Abstract

Houttuynia cordata Thunb. (HC) is a traditional medicinal plant with a variety of pharmaceutical activities. The objective of this study was to investigate the growth, photosynthetic parameters, and antioxidant properties of HC plants in response to various temperatures. Pots of HC plants were maintained in day/night temperatures of 15/10 °C, 20/15 °C, 25/20 °C (control), 30/25 °C, and 35/30 °C for two months in each of five growth chambers having a 13.5 h photoperiod at 396, 432, 474, 449, and 619 µmol·m-2·s-1 radiation, respectively. Eight plants for each temperature were randomly placed in a growth chamber. HC plants survived at 30/25 °C and 35/30 °C treatments and had significantly higher plant heights, leaf numbers, and soil-plant analysis development (SPAD) and normalized difference vegetation index (NDVI) values compared to other treatments. However, long-term 35/30 °C treatment caused reductions in leaf length and width, significantly decreasing shoot and leaf fresh weight (FW) and dry weight (DW) compared to 30/25 °C treatment and controls. These results indicate that HC leaf development was affected during the 35/30 °C treatment, and that both SPAD and NDVI can help in advancing our understanding of the photosynthesis process in HC. Moreover, all plants subjected to 15/10 °C suffered more severely in all traits and parameters than other treatments. Therefore, HC plants tended to be heat-tolerant and exhibited adaptive morphologic plasticity to 30/25 °C conditions. Positive and significant correlations were observed among temperatures and total phenolics (TP), total flavonoids (TF), chlorogenic acid (CGA), and hyperoside (HO) content, and all bioactive contents increased as temperature increased, except that both CGA and HO content were remarkably decreased after 30/25 °C treatment. Thus, 30/25 °C treatment would be more beneficial for high marketability resulting from increased leaf number, DW, and all secondary metabolites compared to other treatments, and for use as a health food and for medicinal purposes. In addition, leaf growth, physiological parameters, and secondary metabolite accumulations in HC plants can be optimized for commercial production via temperature control technologies. This approach may also be applicable to leafy vegetables to produce stable industrial supplies having high leaf yields and metabolite content.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3