Resistivity-depth Imaging with the Airborne Transient Electromagnetic Method Based on an Artificial Neural Network

Author:

Feng Bing1,Zhang Ji-feng1,Li Dong1,Bai Yang1

Affiliation:

1. Department of Geophysics, School of Geological and Surveying & Mapping Engineering, Chang'an University, Xi'an 710054, China

Abstract

We developed an artificial neural network to map the distribution of geologic conductivity in the earth subsurface using the airborne transient electromagnetic method. The artificial neural network avoids the need for complex derivations of electromagnetic field formulas and requires only input and transfer functions to obtain a quasi-resistivity image. First, training sample set from the airborne transient electromagnetic response of homogeneous half-space models with different resistivities was formed, and network model parameters, including the flight altitude, time constant, and response amplitude, were determined. Then, a double-hidden-layer back-propagation (BP) neural network was established based on the mapping relationship between quasi-resistivity and airborne transient electromagnetic response. By analyzing the mean square error curve, the training termination criterion of the BP neural network was determined. Next, the trained BP neural network was used to interpret the airborne transient electromagnetic responses of various typical layered geo-electric models, and the results were compared with that from the all-time apparent resistivity algorithm. The comparison indicated that the resistivity imaging from the BP neural network approach was much closer to the true resistivity of the model, and the response to anomalous bodies was better than that from an all-time apparent resistivity. Finally, this imaging technique was used to process field data acquired by employing the airborne transient method from the HuaYin survey area. Quasi-resistivity depth sections calculated with the BP neural network and the actual geological situation were in good.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3