Abstract
Gas metal arc (GMA) welding is widely used in the machinery industry. The quality of a welded joint is affected by the penetration of root pass welding in the V-groove joint. Automation using GMA welding is continuously required, and root pass welding automation is required to automate the entire welding process. In particular, the development of a prediction model that can ensure full penetration back-bead is required for the automation of root pass welding. In this study, a convolutional neural network (CNN) model was applied to predict the occurrence of back-bead in V-groove butt joint GMA root pass welding. The bead profile was measured using a laser vision sensor system and it was used as the input data for the prediction model, and the bead occurrence was used as the output data for the model. A total of 12,873 bead profiles were extracted and pre-processed through cutting, resizing, and thresholding. The CNN model consists of nine layers, and performs three convolution and two pooling operations. The accuracy of the prediction model was 99.5%, and through this study, it was demonstrated that the quality of root-pass welding can be controlled by using convolutional neural network and it can contribute to automation.
Funder
Korea Institute of Industrial Technology
Publisher
The Korean Welding and Joining Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献