Study of Convolution Neural Network Based Deep Learning to Classify the Quality of Self-Piercing Riveting Joint

Author:

Kim Min GyuORCID,Lee Tae HyunORCID,Lee Seung HwanORCID,Kim Cheol HeeORCID,Kam Dong HyuckORCID

Abstract

The SPR(Self-Piercing Riveting) process is a mechanical joining process that is mainly applied to assembling multimaterial parts to reduce the weight of the car body. Because the quality of SPR joints is mainly evaluated through cross sectional inspection, which is a type of destructive inspection, it is expensive and time-consuming. Machine learning technology is being proposed as a non-destructive testing because it can predict the quality based on the signals generated during the process. However, research result on the quality prediction modeling of SPR joints have not yet been reported. In this study, the prediction accuracy according to the signal combination was compared and evaluated by applying the CNN algorithm using the displacement and load signals generated during the SPR process and the acoustic signal obtained from the acoustic sensor. The materials used in the experiment were SGAFC 1180Y, CFRP, and SPFC 590 and the thickness were 1.4 mm, 1.8 mm, and 1.0 m respectively and a three-layer SPR process was performed. After evaluating joining was performed by selecting the abnormal process conditions, with 12 conditions that may occur during the process. Consequently, in the case of the first model in which the CNN algorithm was based on displacement and load signals, the quality prediction accuracy was estimated to be 90.0%. In the case of the second model in which the CNN algorithm added acoustic signals to the displacement and load signals, the quality prediction accuracy was estimated to be 77.5%.

Publisher

The Korean Welding and Joining Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3