Multiple Fracture Initiation in Openhole Without Mechanical Isolation: First Step to Fulfill an Ambition

Author:

Chang Frank F.1,Bartko Kirk1,Dyer Steve2,Aidagulov Gallyam2,Suarez-Rivera Roberto2,Lund Jeff2

Affiliation:

1. Saudi Aramco

2. Schlumberger

Abstract

Abstract When a well is hydraulically fractured, the propagation of the fracture away from the wellbore is dictated by the far field stresses in the reservoir. However, the fracture initiation from the wellbore depends strongly on the near wellbore stress state created by drilling the well. Misaligned fracture initiation and propagation planes can reduce the wellbore-to-reservoir connectivity causing operation failure and high post fracturing skin. Currently creating multiple fractures along a horizontal openhole requires mechanical isolation means such as openhole packers or sand plugs. They can be costly and time consuming. In addition, there is no control of fracture initiation within one isolated section. Undesirable competing fractures within the zone can occur to impact the fracture length. Significant improvement can be made if the factors controlling multiple fracture initiation without mechanical isolation can be understood. Experimental work in multiple fracture initiation has been rare, controlled multiple fracture initiation is non-existent. Therefore a series of laboratory experiments was performed in a true tri-axial stress frame to investigate how multiple fractures can be initiated in a controllable fashion. In the tests, notches at specific locations along the openhole wellbore were created. The impact of the notch depth on the orientation of the hydraulically induced fractures was studied. In addition to the experiments, continuum fracture mechanics modeling using finite element was also conducted to rationalize the experimental observations of fracturing initiation process in the rock. The results of block tests provided new insight in multiple fracture initiation. By monitoring the real time acoustic emission events, the sequence of fracture creation as wellbore pressure increased was visualized. The finite element modeling gives simple criteria to explain the observed orientation of initiated fracture as a function of notch depth.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3