Novel Drag-Reducing Agents for Fracturing Treatments Based on Polyacrylamide Containing Weak Labile Links in the Polymer Backbone

Author:

Kot E..1,Saini R.K.. K.2,Norman L.R.. R.2,Bismarck A..1

Affiliation:

1. Imperial College London

2. Halliburton

Abstract

Summary Water-soluble polymers have found extensive use in the oil and gas industry. For instance, high-molecular-weight polymers are very efficient drag-/friction-reducing agents and viscosifiers. Unfortunately, the adsorption of the polymer on the reservoir formation reduces the effectiveness of the recovery of oil and gas from low-permeability formations, such as shale. The availability of water-soluble polymers containing weak links in the backbone of the polymer that can be degraded upon experiencing a certain trigger, such as temperature, pH, or reducing agent, would be very advantageous. Because of the ability of weak links to degrade under certain conditions, such polymers can be used for their intended application and can afterward be degraded in a controlled and predetermined way. The resulting lower-molecular-weight fractions of that polymer lead to a reduced viscosity and quick partitioning into the water phase, and they are also less likely to adsorb onto formation surfaces. Additionally, no oxidizers need to be pumped to break or clean the deposited polymer, thus saving treatment time. It has been proved that using a bifunctional reducing agent containing degradable groups and oxidizing metal ions as a redox couple is an effective method to initiate free-radical polymerization and build degradable groups into the backbone of vinyl polymers. Temperature-degradable but hydrolytically stable azo groups showed the most-desirable results. The presence of azo groups in the backbone of the synthesized polyacrylamide (PAM) was confirmed by H1-NMR spectra and differential scanning calorimetry (DSC). The degradation behavior of the PAM with temperature-sensitive azo groups was characterized using gel permeation chromatography (GPC) and proved that multiple labile links were built into the polymer backbone. It was also found that PAM with azo links in the polymer backbone is as good a drag-reducing agent as pure PAM. However, PAM with azo links in the backbone loses its drag-reduction properties once subjected to elevated temperatures, which for some applications is viewed as an advantage.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3