Affiliation:
1. Imperial College London
2. Halliburton
Abstract
Summary
Water-soluble polymers have found extensive use in the oil and gas industry. For instance, high-molecular-weight polymers are very efficient drag-/friction-reducing agents and viscosifiers. Unfortunately, the adsorption of the polymer on the reservoir formation reduces the effectiveness of the recovery of oil and gas from low-permeability formations, such as shale. The availability of water-soluble polymers containing weak links in the backbone of the polymer that can be degraded upon experiencing a certain trigger, such as temperature, pH, or reducing agent, would be very advantageous. Because of the ability of weak links to degrade under certain conditions, such polymers can be used for their intended application and can afterward be degraded in a controlled and predetermined way. The resulting lower-molecular-weight fractions of that polymer lead to a reduced viscosity and quick partitioning into the water phase, and they are also less likely to adsorb onto formation surfaces. Additionally, no oxidizers need to be pumped to break or clean the deposited polymer, thus saving treatment time.
It has been proved that using a bifunctional reducing agent containing degradable groups and oxidizing metal ions as a redox couple is an effective method to initiate free-radical polymerization and build degradable groups into the backbone of vinyl polymers. Temperature-degradable but hydrolytically stable azo groups showed the most-desirable results. The presence of azo groups in the backbone of the synthesized polyacrylamide (PAM) was confirmed by H1-NMR spectra and differential scanning calorimetry (DSC). The degradation behavior of the PAM with temperature-sensitive azo groups was characterized using gel permeation chromatography (GPC) and proved that multiple labile links were built into the polymer backbone. It was also found that PAM with azo links in the polymer backbone is as good a drag-reducing agent as pure PAM. However, PAM with azo links in the backbone loses its drag-reduction properties once subjected to elevated temperatures, which for some applications is viewed as an advantage.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献