No Reservoir Model? No Problem. Unconventional Well Spacing Optimization With Simple Tools

Author:

Miller Patrick1,Redpath Darcy1,Dauncey Keane1

Affiliation:

1. PETRONAS Energy Canada Ltd.

Abstract

Abstract Optimizing economics for unconventional resource development is a delicate balance among four main factors: reservoir deliverability, commodity price, completion design, and well spacing. For a certain reservoir, commodity price, and completion design, there is a well spacing that will optimize field development net present value (NPV). However, if we consider a different part of the reservoir (area or landing zone), commodity price, or completion design, that optimal well spacing changes. Given that this problem is fraught with uncertainty (in price, reservoir deliverability, and the impact on production of changing completion design or well spacing), we need simple, flexible tools to make better decisions about unconventional pad design. From a technical perspective, teams of subsurface professionals strive to understand the relationship between well productivity and well spacing for a given completion design (or vice versa). If the well spacing is too tight relative to the size of fracture stimulation, the recovery factor will be high, but the development plan will be over-capitalized. If the well spacing is too wide relative to the fracture stimulation, the per-well recovery will be high, but too much resource will be left in the ground and the NPV of the development plan will be low. To search for the optimal pad design, operators often invest in integrated technical workflows with multi-well fracture modeling and reservoir simulation; although useful, these workflows are not practical to apply for every asset in a portfolio because they simply take too long. As an alternative approach, this paper builds on existing tools in the literature to quantify the impact of changing well spacing on well productivity for a given completion design, using a new, simple, intuitive empirical equation. Using real data from the Permian basin, this paper applies the empirical equation to model the relationship between well performance and well spacing, and quantify uncertainty in that relationship. By linking this equation with a simple economic model, the paper shows how to make appropriate well spacing decisions under uncertainty, and how those decisions would change due to changes in reservoir deliverability or commodity price. Compared to similar methods in the literature, this approach better captures the physics associated with overlap in drainage areas for adjacent unconventional wells, while maintaining simplicity and ease of implementation. The paper also discusses how to integrate various diagnostics that give information about fracture geometry, to help guide the bounds of uncertainty in the well performance relationship. Even with limited data, this approach can be applied to yield useful information for decision makers about how to adjust unconventional pad design to improve development plan economics.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3