Decision-Focused Optimization: Asking the Right Questions About Well-Spacing

Author:

Hassen Ryan A.1,Fulford David S.1,Burrows Clayton T.1,Starley Gregory P.1

Affiliation:

1. Apache Corporation

Abstract

Abstract Engineers and leaders who must decide on development strategies for unconventional resource projects face a challenging design problem. While we must make decisions on well and completion design, including well-spacing in three-dimensions, the complexity of the physical system and the interactions between these parameters can become overwhelming. The technical optimization problem can be difficult; however, asking the right questions can make the business decision clearer than it first appears. The typical approach to design optimization problems is to build models, with a tendency toward including an ever-increasing number of parameters to describe the system in exhaustive detail. However, our uncertainty in the model parameters often makes it impossible to identify the true optimum. In this work, we focus instead on reducing the number of model parameters and capturing the impact of these critical uncertainties on our business decisions. This allows us to answer the right questions in order to define and choose the best well-spacing strategy. For well-spacing optimization, a critical uncertainty is the relationship between the chosen well-spacing and the potential well-performance degradation, in terms of estimated ultimate recovery (EUR) and initial production (IP). Rather than attempting to describe fracture geometry and well interference from a mechanistic standpoint, we introduce a lumped parameter, the shared reservoir (SR) factor, to account for this complex relationship. The parameter distribution may be calibrated to (a) well results in a play, (b) well results in carefully selected analogue plays, or (c) simulated well results from probabilistic analyses. An example of a Monte-Carlo simulation using the uncertainty of the SR factor, as well as the mean EUR and IP, highlights the utility of the method. We also illustrate how the spacing decision impacts key risk and financial metrics, including the expected monetary value of the project, the probability of regretting the decision, and the probability of commercial success of the project. The shared reservoir factor is proposed to capture the complex relationships between the well-spacing decision and the EUR and IP that result from this decision. Using the shared reservoir factor, we can develop simple stochastic models to clarify an otherwise frustratingly complex optimization problem.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3