Drilling with Digital Twins

Author:

Nadhan Derek1,Mayani Maryam Gholami1,Rommetveit Rolv1

Affiliation:

1. eDrilling

Abstract

Abstract The industry is undergoing a transition into efficient technologies and it has digitalization written all over it. Digitalization not only should be about data, a fancy software, touchscreens and the internet, it is important that solutions are able to connect within existing work processes and with people for companies to truly lead to more efficient and safer drilling operations. Oil and gas industries are now moving towards using Digital Twin's during the life-cycle of well construction. The concept of Digital Twins was first introduced by Dr. Michael Grieves at the University of Michigan in 2002 through Grieves’ Executive Course on Product Lifecycle Management. Digital Twin is a digital copy of the physical systems and act as a connection between physics and digital world. The digital system gets the real-time data from the mechanical systems which include all functionality and operational status of the physical system. An example from another industry; A Formula 1 team uses data from many sensors used in the car, harnessing data and using algorithms to make projections about what's ahead, and apply complex computer models to relay optimal race strategies back to the driver. Ultimately, to drive faster and safer. By means of the digital twin of the drilling wells during the life cycle of the drilling by combining digital and real-time data together with predictive diagnostic messages there is seen a lot of advantageous in the improvement of accuracy in decision making and results. This again will help the industry to increase safety, improve efficiency and gain the best economic-value-based decision. A Digital Twin driven by real-time data helps to give operations the optimal plan with focus on safety, risk reduction and improved performance. In this paper, the concept will first be explained in creating and utilizing a Digital Twin of your well for drilling and how it will directly influence how Drilling/well engineers, managers and supervisors plan, prepare and monitor their drilling operations and then implement learnings on future wells; for faster and improved decision making with direct relation to predicting and avoiding/mitigating NPT while also optimizing operations along with it. Case examples will be shared, showing value from use of the Digital Twin from first introduced in 2008 up until now where operators around the globe have implemented it for multiple uses in the drilling lifecycle.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Causes of Energy Crises Post-COVID-19 Situation;Energy Crisis and Its Impact on Global Business;2024-06-30

2. Drilling Advisory Automation with Digital Twin and AI Technologies;Day 1 Tue, March 05, 2024;2024-02-27

3. A Review of Modern Approaches of Digitalization in Oil and Gas Industry;Upstream Oil and Gas Technology;2023-09

4. Design of Digital Twin Architecture for Drilling Engineering;2023 42nd Chinese Control Conference (CCC);2023-07-24

5. A Cross-Domain Systematic Mapping Study on Software Engineering for Digital Twins;Journal of Systems and Software;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3