SAGD Operations in the Presence of Overlying Gas Cap and Water Layer-Effect of Shale Layers

Author:

Pooladi-Darvish M.1,Mattar L.2

Affiliation:

1. University of Calgary

2. Fekete Associates Inc.

Abstract

Abstract The technical and commercial success of SAGD projects over the past decade has opened the door to the development of a large number of bitumen reservoirs in Canada, previously thought uneconomical to produce. Some of these reservoirs have overlying gas caps and/or water zones. Some studies have suggested that gas-cap production might "sterilize" the underlying bitumen. Many such studies however, assumed rather thick continuous pays with high permeability, and considered an infinite gas-cap. In this work, a simulation study was conducted to examine the feasibility of bitumen production from a certain project area in Alberta, using the SAGD process, and to study the effect of production from the gas cap. A decision needed to be made as to whether gas production should be delayed until after bitumen production. The large well spacing did not allow a detailed description of the connectivity of the shale layers. The uncertainty was compounded by the geological setting of the study area, a system of channel sands cut through the original marine sand and shale deposits. Since the actual shale connectivity and thickness was unknown, a methodology was developed to incorporate different geological descriptions using the available core and log data. Five reservoir models were developed. Bitumen recovery, average oil production rate, and cumulative steam-oil ratio (SOR) obtained from thermal simulation were the three main parameters used for evaluation of the attractiveness of bitumen recovery operations. These numbers were compared with some of the corresponding values reported and/or forecast for economically feasible operations such as the UTF and Christina Lake projects. The effect of pressure reduction (caused by gas-cap production) on production rate and SOR was also investigated. The results indicated that for conditions considered in this study the effect of gas production on bitumen recovery was minor, and appeared as a small deceleration of the recovery and a small increase in SOR. Introduction Many bituminous reservoirs in Alberta contain overlying gas. The gas owners would like to produce the gas. However, there is concern as to whether or not gas production might adversely affect any possible bitumen recovery process in the future. The primary candidate recovery method for such bitumen formations is the Steam-Assisted Gravity Drainage (SAGD)(1) process. The objective of this study is to examine the feasibility of bitumen recovery from the underlying sands, and to determine the effect of "prior" gas production on the process. The effects of overlying gas and/or water sands on the SAGD process are presented first. This is followed by a discussion of the effect of continuous and discontinuous shale layers, and their incorporation in the numerical model, along with the determination of rock properties. Thermal simulation results and conclusions follow. Background The UTF project demonstrated the viability of the SAGD process for production of some of the bituminous reservoirs of Alberta(2, 3), where more conventional thermal processes are less successful due to immobility of the bitumen at reservoir conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3