Feasibility of Carbon Storage in Kirby Depleted Shallow Gas Fields: A Numerical and Statistical Analysis

Author:

Peng Xiaolong1,Chen Zhuoheng1,Zeng Fanhua2,Yuan Wanju1,Yao Jiangyuan1,Hu Kezhen1

Affiliation:

1. Geological Survey of Canada Calgary

2. University of Regina

Abstract

AbstractThe current screening criteria excluded shallow formations (depth < 800 m) from the desirable CO2 geological storage sites. However, in the Athabasca oil sands area of northeast Alberta, shallow gas reservoirs have at least 500 Mt storage potential and are close to many large emitters in Alberta. This study uses Kirby gas fields as an example and examines the suitability of shallow gas reservoirs as CO2 storage sites from leaking risks associated with engineering aspects.First, the storage systems characterized by five parameters were built based on a statistical analysis of 210 gas pools in the Kirby field. Second, to capture uncertainties, 270 cases were simulated to represent the sealing-layer performances. The results were then analyzed statistically, where an information-entropy-based regression tree was generated to rank the relative importance of the parameters and leaking risk level. Third, the storage systems with multi-sealing layers were modeled to examine the effective drainage area, injectivity, and storage capacity under different drilling and injection schemes. Finally, the potential issues of carbon storage in depleted shallow gas fields were addressed.Our study suggests that the CO2 storage potential and carbon-neutral benefits of the shallow gas reservoir in the Athabasca oil sands area are underestimated for the low-carbon energy transition. The results found that the regression tree allows for screening parameters effectively for selecting storage sites from the shallow gas pools and revealed that the permeability of the sealing layers is more important than the seal thickness. For CO2 storage in shallow formations, the minimum requirements of the seal (especially for the caprock) under the safe injection pressure range are a permeability of less than 0.001 mD and a thickness higher than 35 m. Due to key characteristics of shallow gas reservoirs (high permeability and thin reservoir layers), the CO2 plume behaviors are significantly different from reported CO2 storages in desirable deep formations. The CO2 plume will spread rapidly in all directions of the reservoirs and reaches the maximum capacity quickly. A low well density of the CO2 injection network (< 0.39 wells/km2) is sufficient for CO2 storage in shallow depleted gas reservoirs. Compared to the single-layer injection scheme, the multi-layer injection can relieve the early leaking risks of the mid-sealing layers and increase the injection rate to nearly 1 Mt CO2 per year. The short project life resulting from the high injection rate and small storage capacity in each gas pool makes the CCS projects of shallow reservoirs in NE Alberta more suitable for transporting CO2 using tankers or repurposing the old pipelines nearby. It also makes the small (~64.7 E4m2) to medium gas reservoirs (259 E4m2) with excellent top seals the desirable candidates of CO2 storage for small companies when the carbon tax reaches $170/ton in 2030.A novel workflow with an effective assessment methodology for selecting CO2 storage sites from shallow gas pools has been proposed. The results can assist geoscientists in reducing uncertainty on the estimate of CO2 capacity storage and provide practical guidance on site selection for the pre-feasibility study of CO2 storage in shallow formations.

Publisher

SPE

Reference35 articles.

1. Shell Canada Limited: Application for the Quest Carbon Capture and Storage Project;ABERCB,2012

2. Alberta Energy Outlook ST98: Natural Gas Reserves 2021;AER,2022

3. Designated Field, Oil Sands Areas, and Development Entities;AER,2022

4. Directive 086 ( released December 2016 ) Stakeholder Feedback and AER Response;AER,2016

5. Alberta Table of Formations;AER, AGS,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3