Improved Integrated Reservoir Interpretation Using Gas While Drilling Data

Author:

Kandel D.1,Quagliaroli R.2,Segalini G.1,Barraud B.1

Affiliation:

1. TotalFinaElf

2. Eni-Agip Div.

Abstract

Summary The acquisition of gas in mud data while drilling for geological surveillance and safety is an almost universal practice. This source of data is only rarely used for formation evaluation because of the widely accepted presumption that it is unreliable and unrepresentative. Recent developments in the mud-logging industry to improve gas data acquisition and analysis have led to the availability of better quality data. Within a joint Elf/Eni-Agip Div. research program, a new interpretation method has been developed following the comprehensive analysis and interpretation of gas data from a wide range of wells covering different types of geological, petroleum, and drilling environments. The results, validated by correlation and comparison with other data such as logs, well tests, and pressure/volume temperature (PVT) data, enable us to characterize lithological changes; porosity variations and permeability barriers; seal depth, thickness, and efficiency; gas diffusion or leakage; gas/oil and hydrocarbon/water contacts; vertical changes in fluid over a thick monolayer pay zone; vertical fluid differentiation in multilayer intervals; and biodegradation. The comparison of surface gas, PVT, and geochemistry data clearly confirms the consistency between the drilling gas data (gas shows) and the corresponding reservoir fluid composition. The near real-time availability, at no extra acquisition cost, of such data has led to: The optimization of future well operations (such as logging and testing). A better integration of while-drilling data to the well evaluation process. Asignificant improvement in both early formation evaluation and reservoir studies, especially for the following applications, in which traditional log analysis often remains inconclusive: Very-low-porosity reservoirs. Thin beds. Dynamic barriers and seal efficiency. Low-resistivity pay. Light hydrocarbons. Examples show gas while drilling (GWD) wellsite quicklook interpretations with simple lithological and fluid interpretations, as well as more complex reservoir and fluid characterization applications in varied geographical and geological contexts; both demonstrate how GWD data are integrated with more standard data sets.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3