Affiliation:
1. Epic Consulting Ltd.
2. Streamsim Technologies Inc.
Abstract
Summary
Modern streamline-based reservoir simulators are able to account for actual field conditions such as 3D multiphase flow effects, reservoir heterogeneity, gravity, and changing well conditions. A streamline simulator was used to model four field cases, with approximately 400 wells and 150,000 gridblocks. History-match run times were approximately 1 CPU hour per run, with the final history matches completed in approximately 1 month per field. In all field cases, a high percentage of wells were history matched within the first two to three runs.
Streamline simulation not only enables a rapid turnaround time for studies, but it also serves as a different tool in resolving each of the studied fields' unique characteristics.
The primary reasons for faster history matching of permeability fields using 3D streamline technology as compared to conventional finite-difference (FD) techniques are as follows:
Streamlines clearly identify which producer-injector pairs communicate strongly (flow visualization). Streamlines allow the use of a very large number of wells, thereby substantially reducing the uncertainty associated with outer-boundary conditions. Streamline flow paths indicate that idealized drainage patterns do not exist in real fields. It is therefore unrealistic to extract symmetric elements out of a full field. The speed and efficiency of the method allows the solution of fine-scale and/or full-field models with hundreds of wells. The streamline simulator honors the historical total fluid injection and production volumes exactly because there are no drawdown constraints for incompressible problems. The technology allows for easy identification of regions that require modifications to achieve a history match. Streamlines provide new flow information (i.e., well connectivity, drainage volumes, and well allocation factors) that cannot be derived from conventional simulation methods.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献