Characterization and Dynamic Adjustment of the Flow Field during the Late Stage of Waterflooding in Strongly Heterogeneous Reservoirs

Author:

Wang DaigangORCID,Liu Fangzhou,Li Guoyong,He Shumei,Song Kaoping,Zhang Jing

Abstract

The flow field is the fluid dynamic flow path in strongly heterogeneous reservoirs, and its evolution significantly affects the distribution of remaining oil, showing a disordered and highly dispersed mode caused by long-time water injection. By combining traditional flow-field evaluation with flow diagnostics, this paper proposes a methodology to quantitatively characterize and adjust the flow field in real time during the late stage of waterflooding in strongly heterogeneous reservoirs. In the study, the fluid velocity, abundance of predominant remaining oil, and Lorenz coefficient are preferred as the characteristic parameters to evaluate the effect of reservoir and flow heterogeneity on the flow field. Taking the minimization of the Lorentz coefficient as the objective function, the optimal injection and production parameters are obtained by dynamic adjusting the flow field. The results show that as water injection continues, the shape and variation of the flow field are jointly influenced by the reservoir rhythm, vertical permeability contrast, and lateral permeability distribution. The larger the permeability contrast, the greater the influence of the lateral permeability distribution. When the permeability contrast is large, the Lorenz coefficient strongly depends on the lateral permeability distribution. Finally, this method is applied to an actual heterogeneous reservoir, and a better effect of oil increase and water reduction is achieved.

Funder

National Natural Science Foundation of China

Science Foundation of China University of Petroleum, Beijing

Prospective and Fundamental Science and Technology Project, PetroChina

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3