A Successful Acid Fracturing Treatment in Asphaltene Problematic Reservoir, Burgan Oilfield Kuwait

Author:

Al-Shammari A.1,Sinha S.1,Sheikh B.2,Youssef A.2,Jimenez C.1,Al-Mahmeed F.1,Al-Shamali A.1

Affiliation:

1. Kuwait Oil Company, Kuwait

2. NAPESCO, Kuwait

Abstract

Abstract The Burgan Marrat Reservoir is a challenging high-pressure, high-temperature carbonate oil reservoir dating back to the Jurassic age. This specific reservoir within the Burgan Field yields light oil, but it has a significant issue with Asphaltene deposition in the wellbore. Additionally, its well productivity is hampered by low matrix permeability. Addressing these challenges is crucial, and a successful acid fracturing process can not only enhance well productivity but also address Asphaltene-related problems. This study delves into a comprehensive methodology that was employed. The focus of well selection was on ensuring good well integrity and maintaining a considerable distance from the oil-water contact (OWC). The approach involved conducting a Multi-Rate test followed by pressure build-up to establish a baseline for understanding the reservoir's behavior, including darcy and non-darcy skin. The treatment design aimed at better fluid loss control and initiating highly conductive fractures in the reservoir. Specific measures, such as using suitable diverters and acid, were employed to maximize the length of the fractures. To validate the approach, a nodal analysis model was fine-tuned to predict how the well would perform under these conditions. The results post-stimulation were impressive. There was a substantial improvement in well production and flowing bottom hole pressure. In fact, the productivity index of the well increased significantly, representing a substantial enhancement in output. The pressure build-up test after the fracture demonstrated a linear flow within the fracture, indicating a successful treatment with a fracture half-length of approximately 110 feet and a negative skin, which signifies an improvement in flow efficiency. Furthermore, the treatment effectively mitigated the risk associated with Asphaltene deposition, a significant accomplishment given the historical challenges faced in this reservoir. This success can be attributed to an innovative workflow that incorporated a meticulous surveillance plan, a well-thought-out fracturing treatment design, and the application of advanced nodal analysis. Together, these components not only optimized the well's performance but also paved the way for the development of similar high-pressure, tight carbonate reservoirs. This approach not only enhances productivity but also ensures successful mitigation of Asphaltene-related issues, marking a significant advancement in reservoir engineering techniques.

Publisher

SPE

Reference6 articles.

1. Pressure Transient Analysis Assists in Production Optimization of Magwa- Marrat Reservoir in South East Kuwait;Al-Shammari,2019

2. Understanding Reservoir Fluid Behavior to Mitigate Risk Associated to Asphaltene Deposition in the Reservoir Rock Near to Asphaltene Onset Pressure AOP in the Magwa Marrat Depleted Reservoir;Al-Obaidli,2019

3. An Integrated Evaluation of Successful Acid Fracturing Treatment in a Deep Carbonate Reservoir having High Asphaltene Content in Burgan Field;Qasem,2007

4. Multi-Stage Stimulation Technique Boosts Production for Horizontal Wells in Kuwait;Desai,2009

5. Fundamentals of Reservoir Engineering;Dake,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3