Understanding Reservoir Fluid Behavior to Mitigate Risk Associated to Asphaltene Deposition in the Reservoir Rock Near to Asphaltene Onset Pressure AOP in the Magwa Marrat Depleted Reservoir

Author:

Al-Obaidli Asmaa1,Al-Nasheet Anwar1,Snasiri Fatemah1,Al-Shammari Obaid1,Al-Shammari Asrar1,Sinha Satyendra1,Amjad Yaser Muhammad2,Gonzalez Doris3,Gonzalez Fabio3

Affiliation:

1. KOC

2. Schlumberger

3. BP

Abstract

Abstract The Magwa-Marrat field started production early 1984 with an initial reservoir pressure of 9,600 psia Thirty-six (36) producer wells have been drilled until now. By 1999, when the field had accumulated ~92 MMSTB of produced oil and the reservoir pressure had declined to ~8000 psia, the field was shut-in until late 2003 due to concerns on asphaltene deposition in the reservoir that could cause irreversible damage and total recovery losses. The field was restarted in 2003 an it has been in production since then. By April 2018 the field had produced 220 MMSTBO, with the average reservoir pressure declined to 6,400 psia. As crude oil has been produced and the energy of the reservoir has depleted, the equilibrium of its fluid components has been disturbed and asphaltenes have precipitated out of the liquid phase and deposited in the production tubing. There is a concern that the reservoir will encounter asphaltene problems as the reservoir pressure drops further. The objective of this manuscript is to present the process to understand the reservoir fluids behavior as it relates to asphaltenes issues and develop a work frame to recognize and mitigate the risk of plugging the reservoir rock due to asphaltenes deposition with the end purpose of maximizing recovery while producing at the maximum field potential Data acquired during more than 30 years have been integrated and analyzed including 22 AOP measurements using gravimetric and solid detection system techniques, 17 PVT lab reports, 1 core- flooding study and 1 permeability/wettability study. Despite the wide range of AOP measured in different labs, it was possible to determine that the AOP for the Magwa-Marrat fluid is 5,600 ±500 psia and the saturation pressure is 3,200 ±200 psia. Results of this fluids review study indicates that it might be possible to deplete the reservoir pressure below the AOP while producing at high rates. Additional field testing and lab research have been proposed to 1) establish an adequate operating envelop for each well to optimize production and mitigate asphaltene deposition in the tubing to decrease downtime due to coiled tubing cleanouts which will reduce OPEX, 2) Support determination of a suitable reservoir pressure depletion to minimize CAPEX by implementing a pressure support project at an optimum reservoir pressure, and 3) Establish an appropriate field development strategy to produce the field at its maximum potential without jeopardizing the health of the reservoir while optimizing ultimate recovery

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3