Abstract
Abstract
From a consideration of the thermodynamic stability of microemulsions, one can establish a relation between the interfacial tension y at the surface of the globules and the derivative, with respect to their radius re, of the entropy of dispersion of the globules in the continuous medium. Expressions for the entropy of dispersion are used to show that gamma is approximately proportional to kT/r2e, where k is Boltzmann's constant and T is the absolute temperature. Since the environment of the interface between the microemulsion and the excess dispersed medium is expected to be similar to that at the surface of the globules, these expressions are used to evaluate the interfacial tension between microemulsion and excess dispersed medium. Values between 10 and 10 dyne/cm that decrease with increasing radii are obtained, in agreement with the range found experimentally by various authors. The origin of the very small interfacial tensions rests ultimately in the adsorption of surfactant and cosurfactant on the interface between phases. The effect on the interfacial tension of fluctuations from one type of microemulsion to the other, which may occur near the phase inversion point, is discussed.
Introduction
The system composed of oil, water, surfactant, cosurfactant, and salt exhibits interesting phase equilibria. For sufficiently large concentrations of surfactant, a single phase can be formed either as a microemulsion or as a liquid crystal. In contrast, at moderate surfactant concentrations, two or three phases can coexist. For moderate amounts of salt (NaCl), an oil phase is in equilibrium with a water-continuous microemulsion, whereas for high salinity, an oil-continuous microemulsion coexists with a water phase. At intermediate salinity, a middle phase (probably a microemulsion) composed of oil, water, surfactants, and salt forms between excess water and oil phases. Extremely low interfacial tensions are found between the different phases, with the lowest occurring in the three-phase region. These systems have attracted attention because of their possible application to tertiary oil recovery. It has been shown that the displacement of oil is most effective at very low interfacial tensions.Microemulsions have been investigated with various experimental techniques, such as low-angle X-ray diffraction, light scattering, ultracentrifugation, electron microscopy, and viscosity measurements. These have shown that the dispersed phase consists of spherical droplets almost uniform in size. While it is reasonable to assume that the microemulsions coexisting with excess oil or water contain spherical globules of the dispersed medium, the structure of the middle-phase microemulsion is more complex. Experimental evidence obtained by means of ultracentrifugation indicates, however, that at the lower end of salinity the middle phase contains globules of oil in water, while at the higher end the middle phase is oil continuous. A phase inversion must occur, at an intermediate salinity, from a water-continuous to an oil-continuous microemulsion. The free energies of the two kinds of microemulsions are equal at the inversion point. Since their free energy of formation from the individual components is very small, small fluctuations, either of thermal origin or due to external perturbations, may produce changes from one type to the other in the vicinity of the inversion point. As a consequence, near this point, it is possible that the middle phase is composed of a constantly changing mosaic of regions of both kinds of microemulsions.
SPEJ
P. 593^
Publisher
Society of Petroleum Engineers (SPE)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献