Modeling the Effect of Axial Oscillation Tools in Torque and Drag Computations

Author:

Mahjoub Mohamed1,Dao Ngoc-Ha1,Menand Stéphane1

Affiliation:

1. Drillscan

Abstract

Abstract When drilling complex wells, such as those with long lateral sections, the friction forces become significantly high, which can impede advancement of the drill string and reduce drilling performance. In these situations, Axial Oscillation Tools (AOT) could be used to introduce an axial vibration to the drill string. By locally reducing the friction forces, better transmission of weight to the drill bit is possible and an increase in the rate of penetration occurs. However, to optimize the use of these tools, predictive modeling is necessary to assess their effect on drilling characteristics. A new modeling approach is proposed to accurately model the effect of the AOT on drilling operations without the need to carry out resource-intensive and time-consuming dynamic computations. To estimate the influence length (i.e. the extent of the axial vibrations) and the maximum displacement at the AOT, a study was performed to determine the most important parameters. Based on this study and on the theory of wave propagation, new analytic expressions are proposed. Once the influence length and the maximum displacement are calculated, an effective friction coefficient is estimated as the mean value of the instantaneous friction coefficient and used in a stiff-string torque and drag model. The model was applied to a real case study, and an agreement between the modeling results and field measurements regarding the influence of the AOT was obtained. Moreover, the effect of the excitation force and rate of penetration on the drill string tension profile was investigated. This work should enable drilling engineers to better optimize the position of AOT along the drill string and to maximize its efficiency.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3