Application of Single Well Chemical Tracer Tests to Determine Remaining Oil Saturation in Deepwater Turbidite Reservoirs

Author:

DeZabala E..1,Parekh B..1,Solis H..1,Choudhary M..1,Armentrout L..1,Carlisle C..2

Affiliation:

1. Hess Corporation

2. Chemical Tracers, Inc.

Abstract

Abstract Remaining oil saturation (ROS) and waterflood residual oil saturation (Sorw) are key parameters for reservoir modeling and waterflood management in a group of heterogeneous deepwater turbidite reservoirs. A large amount of laboratory special core analysis (SCAL) data indicated high Sorw values and a large target potential target for chemical EOR (enhanced oil recovery). Available SCAL data was not considered reliable. Acquiring additional core was considered to be too costly and too risky due to the highly deviated well paths required for new wells. Single Well Chemical Tracer Tests (SWCTT's) in producing wells were the only viable alternative. This paper describes – to our knowledge – the first applications of SWCTT in a deepwater setting. An early 2010 SWCTT showed ROS / Sorw to be much lower than expected but test interpretation was uncertain. The 1st SWCTT provided a valuable learning experience to improve test design and execution and to improve on significant logistical challenges in the deepwater setting. Using lessons learned we performed two additional SWCTT's in late 2010. The later SWCTT's included well integrity pre-tests and smaller completion intervals. Typical SWCTT volumes were ~5,000 bbl of seawater containing tracers with a depth of investigation of ~4 to 5 meters. All three SWCTT's indicated low Sorw values, ranging from 0.05 to 0.20 with a nominal average of 0.15. Similar results from all three SWCTT's indicate that microscopic displacement efficiency is very good; eliminating the option of chemical EOR. The current field development plan is focused on improving volumetric sweep efficiency. Properly designed and executed SWCTT's can be considered as large-scale "laboratory waterflood tests" at true reservoir conditions (e.g., live oil, wettability and stress history). Compared to conventional SCAL tests using small plug samples, SWCTT's see a much larger rock volume and avoid wettability alteration issues that plague modern cores taken with OBM (oil based mud). Though logistically challenging in deepwater, SWCTT's can be more cost- and time-effective than taking a new core.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3