Single Well Chemical Tracer Application for Chemical EOR Pilot Project: Principles and Best Practices

Author:

Khanifar Ahmad -1,Abdul Manap Arif Azhan1

Affiliation:

1. PETRONAS

Abstract

Abstract Chemical injection has been emerged to be one of the processes that can improve oil recovery from major Malaysian offshore oilfield which is currently under waterflooding. Alkali-surfactant (AS) process was identified to be an optimized chemical system for this application. The chemical recipe and formulation for the field trial tests were obtained from comprehensive laboratory experiments studies. Pilot tests were designed and executed to evaluate the effectiveness of this chemical injection prior full field-scale implementation. Single well chemical tracer (SWCT) technique has been utilized to determine the residual oil saturation (Sor) before and after chemical injection in a one-spot pilot and cost-effective manner approach. Two wells and two different chemical formulations were investigated for AS injection responses and four tests were conducted in sequence. The objectives were to validate the laboratory results, assess the critical chemical process parameters such as Sor reduction, adsorption, injectivity, and obtain an operating experience at a harsh offshore environment with high reservoir temperature. Sea water treatment and softening process was needed to protect chemical slug from high-salinity and high-hardness environment. Favorable results achieve where successfully mobilized substantial amounts of Sor, chemicals easily mixed with no injection problems encountered, and no measurable dilution effects that indicated fluids travelling outside of test zones. The initial Sor waterflooding observe to be 0.16 and 0.27 for well 1 and well 2 respectively, while, interestingly, both wells show a 0.04 increase in Sor after first pilots were completed. It is most likely due to a shift in rock wettability toward more water wet. Competing reactions of alkaline was a major concern. Pre-flush and post-flush buffer of soft water was designed to minimize these reactions and allow surfactant to work in more favorable lower salinity water. Fortunately, Sor results show that the competing reactions were not severe enough to prevent the AS systems from working. The lowest Sor were 0.06 and 0.08 in the case of 1.5 PV and 1.0 PV soft-water buffer, respectively. It shows that Sor was not significantly reduced with additional 50% PV buffer. Even in the case of 0.15 PV buffer and 23,000 ppm salinity, Sor decreases only by 25%. It demonstrates that some degree of success will be gained even in the worst case where the salinity was reduced by 60%. This paper presents the principals of SWCT pilot application for a chemical EOR (CEOR) project case study and share the best practices and lessons learnt were achieved from these field trail tests. This paper can be used as a technical reference and guideline for upcoming CEOR projects and promote a detailed development plan which can potentially address various challenges that are often encountered in implementing chemical flooding, particularly at offshore oilfields.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3