Optic Imaging of Two-Phase-Flow Behavior in 1D Nanoscale Channels

Author:

Wu Qihua1,Bai Baojun1,Ma Yinfa1,Ok Jeong Tae2,Neeves Keith B.2,Yin Xiaolong2

Affiliation:

1. Missouri University of Science and Technology

2. Colorado School of Mines

Abstract

Summary Gas in tight sand and shale exists in underground reservoirs with microdarcy (µd) or even nanodarcy (nd) permeability ranges; these reservoirs are characterized by small pore throats and crack-like interconnections between pores. The size of the pore throats in shale may differ from the size of the saturating-fluid molecules by only slightly more than one order of magnitude. The physics of fluid flow in these rocks, with measured permeability in the nanodarcy range, is poorly understood. Knowing the fluid-flow behavior in the nanorange channels is of major importance for stimulation design, gas-production optimization, and calculations of the relative permeability of gas in tight shale-gas systems. In this work, a laboratory-on-chip approach for direct visualization of the fluid-flow behavior in nanochannels was developed with an advanced epi-fluorescence microscopy method combined with a nanofluidic chip. Displacements of two-phase flow in 100-nm-depth slit-like channels were reported. Specifically, the two-phase gas-slip effect was investigated. Under experimental conditions, the gas-slippage factor increased as the water saturation increased. The two-phase flow mechanism in 1D nanoscale slit-like channels was proposed and proved by the flow-pattern images. The results are crucial for permeability measurement and understanding fluid-flow behavior for unconventional shale-gas systems with nanoscale pores.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3