An Analytical Relative Permeability Model Considering Flow Path Structural Characteristics for Gas-Liquid Two-Phase Flow in Shale Fracture

Author:

Pang Hong1ORCID,Wang Duo1ORCID,Wu Tong1,Wang Rui2,Dai Xu2ORCID,Lu Meng3,Pan Zhejun4ORCID

Affiliation:

1. National Key Laboratory of Continental Shale Oil, Northeast Petroleum University

2. National Key Laboratory of Continental Shale Oil, Daqing Oilfield of CNPC

3. Institute of Unconventional Oil & Gas, Northeast Petroleum University

4. National Key Laboratory of Continental Shale Oil, Northeast Petroleum University (Corresponding author)

Abstract

Summary Relative permeability models are essential in describing the multiphase fluid flow in reservoir rocks. Literature work has shown that the existing theoretical models of relative permeability cannot perfectly describe the two-phase flow experimental data in fractures because those models are mostly developed for porous media (such as sandstone) or proposed without fully taking the specific characteristics of two-phase flow into consideration. In this paper, we propose a theoretical two-phase flow relative permeability model based on the tortuous flow channels, considering the structural characteristics of two-phase flow in the fractures. This model considers that the gas and liquid flow through different channels of different shapes and sizes at the same time. The formula for two-phase relative permeability was derived from cubic law in fracture and Darcy’s law, with the influence of the slip effect of the gas phase also considered. The results from different models were compared using several series of experimental data. The model proposed in this paper has a better fit than the others for the raw experimental data. This study demonstrates that it is crucial to take the flow paths and distribution of the two phases into consideration to model the two-phase flow in fracture accurately. This work also found that the tortuosity of the gas channel at the irreducible liquid saturation has a negative effect on gas relative permeability but positive to liquid relative permeability. Moreover, the model demonstrates that the decrease in aperture leads to an increase in the gas relative permeability due to gas slippage, while the impact of gas slippage reduces under high pressure.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3