Stochastic Formulation for Uncertainty Analysis of Two-Phase Flow in Heterogeneous Reservoirs

Author:

Zhang Dongxiao1,Li Liyong2,Tchelepi H. A.2

Affiliation:

1. Los Alamos Natl. Laboratory

2. Chevron Petroleum Technology Co

Abstract

Summary In this article we use a direct approach to quantify the uncertainty in flow performance predictions due to uncertainty in the reservoir description. We solve moment equations derived from a stochastic mathematical statement of immiscible nonlinear two-phase flow in heterogeneous reservoirs. Our stochastic approach is different from the Monte Carlo approach. In the Monte Carlo approach, the prediction uncertainty is obtained through a statistical postprocessing of flow simulations, one for each of a large number of equiprobable realizations of the reservoir description. We treat permeability as a random space function. In turn, saturation and flow velocity are random fields. We operate in a Lagrangian framework to deal with the transport problem. That is, we transform to a coordinate system attached to streamlines (time, travel time, and transverse displacements). We retain the normal Eulerian (space and time) framework for the total velocity, which we take to be dominated by the heterogeneity of the reservoir. We derive and solve expressions for the first (mean) and second (variance) moments of the quantities of interest. We demonstrate the applicability of our approach to complex flow geometry. Closed outer boundaries and converging/diverging flows due to the presence of sources/sinks require special mathematical and numerical treatments. General expressions for the moments of total velocity, travel time, transverse displacement, water saturation, production rate, and cumulative recovery are presented and analyzed. A detailed comparison of the moment solution approach with high-resolution Monte Carlo simulations for a variety of two-dimensional problems is presented. We also discuss the advantages and limits of the applicability of the moment equation approach relative to the Monte Carlo approach.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3