Probabilistic Forecast of Multiphase Transport Under Viscous and Buoyancy Forces in Heterogeneous Porous Media

Author:

Rajabi Farzaneh1ORCID,Tchelepi Hamdi A.1

Affiliation:

1. Department of Energy Resources Engineering Stanford University Stanford CA USA

Abstract

AbstractWe develop a probabilistic approach to map parametric uncertainty to output state uncertainty in first‐order hyperbolic conservation laws. We analyze this problem for nonlinear immiscible two‐phase transport in heterogeneous porous media in the presence of a stochastic velocity field. The uncertainty in the velocity field can arise from incomplete descriptions of either porosity field, injection flux, or both. This uncertainty leads to spatiotemporal uncertainty in the saturation field. Given information about spatial/temporal statistics of spatially correlated heterogeneity, we leverage the method of distributions to derive deterministic equations that govern the evolution of pointwise cumulative distribution functions (CDFs) of saturation for a vertical reservoir, while handling the manipulation of multiple shocks arising due to buoyancy forces. Unlike the Buckley‐Leverett equation, the equation describing the fine‐grained CDF is linear in space and time. Ensemble averaging of the fine‐grained CDF results in the CDF of saturation. Thus, we give routes to circumventing the computational cost of Monte Carlo simulations (MCS), while obtaining a pointwise description of the saturation field. We conduct a set of numerical experiments for one‐dimensional transport, and compare the obtained saturation CDFs, against those obtained using MCS as our reference solution, and the statistical moment equation method. This comparison demonstrates that the CDF equations remain accurate over a wide range of statistical properties, that is, standard deviation and correlation length of the underlying random fields, whereas the corresponding low‐order statistical moment equations significantly deviate from the MCS results, except for very small values of standard deviation and correlation length.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3