Brazil Field Experience of ESP Performance with Viscous Emulsions and High Gas Using Multi-Vane Pump MVP and High Power ESPs

Author:

Barrios Lissett1,Rojas Marisela1,Monteiro Guilherme2,Sleight Neil2

Affiliation:

1. Shell

2. Shell Brazil

Abstract

Abstract This paper provides field experience for the Caisson ESP Technology in subsea boosting system with emulsions and high Gas Volumen Fraction (GVF) using the high power Electric Submersible Pumps (ESPs) systems. Field experience and experimental performance are compared regarding the effects of high viscous emulsion using conventional high capacity ESP systems and the effect of two phase (liquid & gas) fluids on ESP with new technology for high GVF fields and high viscous applications. The Electrical Submersible Pump (ESP) system is an important artificial lift method commonly used for subsea boosting systems. Multiphase flow and viscous fluids cause problems in pump applications. Free gas inside an ESP causes many operational problems such as loss of pump performance or gas lock condition. The objective of this paper is to understand MVP performance for high GVF and viscous emulsions. This paper provides a summary on the performance comparison for a high power ESP system for viscous emulsions and Multi-Vane Pump (MVP) for high GVF wells for Shell major Projects BC-10. These novel projects continue the long tradition of Shell’s leadership in the challenging deepwater environment. Presented is the capability and effects of viscosity and two phase (liquid & gas) fluids using a 1025 series pumps with a charge MVP in series; as well as a 875 series standard ESP system mixed-type pump, which is a multistage centrifugal pumps for deep boreholes. Extensive testing and qualification of the subsea boosting system was undertaken prior to field application. The subsea boosting system experience for offshore operations is reported with new technology, and the effects of viscosity and two phases in real conditions. MVP and high power pumps were proved to be a reliable technology to use in field application managing GVF higher than 50% and high viscous fluid as high as 1200cp as consequence of fluid emulsion. Correction factors needed to be applied to standard design curves to ensure proper field design at opearting conditions.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3