A New Mechanistic Model for Emulsion Rheology and Boosting Pressure Prediction in Electrical Submersible Pumps (ESPs) under Oil-Water Two-Phase Flow

Author:

Zhu Jianjun1,Zhao Hanjun2,Cao Guangqiang2,Banjar Hattan3,Zhu Haiwen4,Peng Jianlin5,Zhang Hong-Quan6

Affiliation:

1. China University of Petroleum, Beijing

2. PetroChina Company, Ltd.

3. Saudi Aramco

4. University of Tulsa (Corresponding author; email: haiwen-zhu@utulsa.edu)

5. CNOOC Research Institute, Ltd.

6. University of Tulsa

Abstract

Summary As the second most widely used artificial lift method in the petroleum industry, electrical submersible pumps (ESPs) maintain or increase flow rates by converting the kinetic energy to hydraulic pressure. As oilfields age, water is invariably produced with crude oil. The increase of water cut generates oil-water emulsions due to the high-shearing effects inside a rotating ESP. Emulsions can be stabilized by natural surfactants or fine solids existing in the reservoir fluids. The formation of emulsions during oil production creates a high viscous mixture, resulting in costly problems and flow assurance issues, such as increasing pressure drop and reducing production rates. This paper, for the first time, proposes a new rheology model to predict the oil-water emulsion effective viscosities and establishes a link of fluid rheology and its effect with the stage pressure increment of ESPs. Based on Brinkman's (1952) correlation, a new rheology model, accounting for ESP rotational speed, stage number, fluid properties, and so on, is developed, which can also predict the phase inversion in oil-water emulsions. For the new mechanistic model to calculate ESP boosting pressure, a conceptual best-match flow rate (QBM) is introduced. QBM corresponds to the flow rate whose direction at the ESP impeller outlet matches the designed flow direction. Induced by the liquid flow rates changing, various pressure losses can be derived from QBM, including recirculation losses, and losses due to friction, leakage, sudden change of flow directions, and so on. Incorporating the new rheology model into the mechanistic model, the ESP boosting pressure under oil-water emulsion flow can be calculated. To validate the proposed model, the experimental data from two different types of ESPs were compared with the model predictions in terms of ESP boosting pressure. Under both high-viscosity single-phase fluid flow and oil-water emulsion flow, the model predicted ESP pressure increment matches the experimental measurements well. From medium to high flow rates with varying oil viscosities and water cuts, the prediction error is less than 15%.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3