Development of an Empirical Equation To Predict Hydraulic-Fracture Closure Pressure From the Instantaneous Shut-In Pressure Using Subsurface Solids-Injection Data

Author:

Kholy S. M.1,Mohamed I. M.1,Loloi M..1,Abou-Sayed O..1,Abou-Sayed A..1

Affiliation:

1. Advantek Waste Management Services

Abstract

Summary During hydraulic-fracturing operations, conventional pressure-falloff analyses (G-function, square root of time, and other diagnostic plots) are the main methods for estimating fracture-closure pressure. However, there are situations when it is not practical to determine the fracture-closure pressure using these analyses. These conditions occur when closure time is long, such as in mini-fracture tests in very tight formations, or in slurry-waste-injection applications where the injected waste forms impermeable filter cake on the fracture faces that delays fracture closure because of slower liquid leakoff into the formation. In these situations, applying the conventional analyses could require several days of well shut-in to collect enough pressure-falloff data during which the fracture closure can be detected. The objective of the present study is to attempt to correlate the fracture-closure pressure to the early-time falloff data using the field-measured instantaneous shut-in pressure (ISIP) and the petrophysical/mechanical properties of the injection formation. A study of the injection-pressure history of many injection wells with multiple hydraulic fractures in a variety of rock lithologies shows a relationship between the fracture-closure pressure and the ISIP. An empirical equation is proposed in this study to calculate the fracture-closure pressure as a function of the ISIP and the injection-formation rock properties. Such rock properties include formation permeability, formation porosity, initial pore pressure, overburden stress, formation Poisson's ratio, and Young's modulus. The empirical equation was developed using data obtained from geomechanical models and the core analysis of a wide range of injection horizons with different lithology types of sandstone, carbonate, and tight sandstone. The empirical equation was validated using different case studies by comparing the measured fracture-closure-pressure values with those predicted by using the developed empirical equation. In all cases, the new method predicted the fracture-closure pressure with a relative error of less than 6%. The new empirical equation predicts the fracture-closure pressure using a single point of falloff-pressure data, the ISIP, without the need to conduct a conventional fracture-closure analysis. This allows the operator to avoid having to collect pressure data between shut-in and the time when the actual fracture closure occurs, which can take several days in highly damaged and/or very tight formations. Moreover, in operations with multiple-batch injection events into the same interval/perforations, as is often the case in cuttings/slurry-injection operations, the trends in closure-pressure evolution can be tracked even if the fracture is never allowed to close.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3