Complex Fracture Closure Pressure Analysis During Shut-in: A Numerical Study

Author:

Wang Daobing1ORCID,Ge Hongkui2,Wang Xiaoqiong2,Wang Yang3,Sun Dongliang1,Yu Bo1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China

2. Unconventional Oil and Gas Science and Technology Research Institute, China University of Petroleum in Beijing, Beijing, China

3. Engineering Technology Research Institute, Southwest Oil & Gas Field Company, PetroChina, Chengdu, China

Abstract

Conventional fracture closure models typically assume homogeneous formation. This assumption renders complex fracture closure pressure analysis during shut-in insufficient at present. In this paper, we use a cohesive zone method (CZM)-based finite element model to obtain the fracture closure pressure and minimum horizontal principal stress of the major fracture and the branch fracture based on pressure fall-off analysis. Key factors including leak-off rate, injection time, and stress anisotropy are discussed in detail. A quantitative relationship between fracture closure pressure and these factors is plotted to reduce or eliminate the errors caused by conventional fracture injection diagnostic models. The results show that leak-off rate, injection time, and stress anisotropy have a significant effect on the fracture closure process. Fracture closure in naturally fractured formations is a slow process, and the early closure pressure represents the closure of the branch fracture, which is much higher than the minimum horizontal stress. This investigation provides new insight into how to estimate the in-situ stress in naturally fractured reservoirs.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3