Affiliation:
1. Shell International Exploration and Production Company
2. Shell Exploration and Production Company
Abstract
Summary
The classic plots of dimensionless fracture conductivity (CfD) vs. equivalent wellbore radius or equivalent negative skin are useful for evaluating the performance of hydraulic fractures (HFs) in vertical wells targeting conventional reservoirs (Prats 1961; Cinco-Ley and Samaniego-V. 1981). The increase in well productivity after hydraulic stimulation can be estimated from the “after fracturing” effective wellbore radius or from the “after fracturing” equivalent negative skin. However, this earlier work does not apply to the case of horizontal wells with multiple fractures. A revision of the diagnostic plots is needed to account for the combination of the resulting radial-flow regime and the transient effect in unconventional reservoirs with ultralow permeability. This paper reviews and extends this earlier work with the objective of making it applicable in the case of horizontal wells with multiple fractures. It also demonstrates practical application of this new technique for fracture-design optimization for horizontal wells.
The influence of finite fracture conductivity (FC) on the HF flow efficiency is evaluated through analytical models, and it is confirmed by a 3D transient numerical-reservoir simulation. This work demonstrates that a redefined dimensionless fracture conductivity for horizontal wells CfD,h = 4 is found to be optimal by use of the maximum of log-normal derivative (subject to economics) for HFs in horizontal wells, and this value of CfD,h can provide 50% of the fracture-flow efficiency and 90% of the estimated ultimate recovery (EUR) that would have been obtained from an infinitely conductive fracture for the same production period. This new master plot can provide guidance for hydraulic-fracturing design and its optimization for hydrocarbon recovery in unconventional reservoirs through hydraulic fracturing in horizontal wells.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献