Optimization Method for Fracture-Network Design under Transient and Pseudosteady Conditions Using Unified-Fracture-Design and Deep-Learning Approaches

Author:

Wang Junlei1ORCID,Wei Yunsheng2ORCID,Pan Yuewei2ORCID,Yu Wei3ORCID

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration and Development (Corresponding author)

2. PetroChina Research Institute of Petroleum Exploration and Development

3. The University of Texas at Austin

Abstract

Summary In unconventional shale and tight reservoirs, the concept of stimulated reservoir volume (SRV) is used to correlate the volume of total injected proppant with well performance. The SRV configuration consists of primary fractures connected to the wellbore and secondary fractures intersecting primary fractures. SRV productivity is determined by fracture conductivity, fracture dimensions, and network complexity, which also vary with time. This work presents an extension of the unified-fracture-design (UFD) approach to account for not only the pseudosteady state (PSS) but also transient flow regimes and ultimately optimize SRV for maximizing well performance. A generalized productivity index (PI) for both the transient and PSS regimes is presented to improve well performance by searching for the maximum PI over time. In addition, a surrogate model is developed to accelerate the optimization. This study demonstrates that the UFD enables the determination of the optimal fracture network conductivity and complexity that contribute to the maximum PI with a given proppant volume. The optimal SRV design is time-dependent until the PSS is reached. The surrogate model not only improves the computational efficiency but also delivers high precision, which means far less computational burden than the traditional parametric-sensitivity analysis.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3