Prediction of Gas Viscosity of Yemeni Gas Fields Using Machine Learning Techniques

Author:

Deumah Salman Sadeg1,Yahya Wahib Ali2,Al-khudafi Abbas Mohamed3,Ba-Jaalah Khaled Saeed3,Al-Absi Waleed Tawfeeq4

Affiliation:

1. China University of Petroleum, Beijing

2. China University of Geoscience, Wuhan

3. Hadhramout University

4. China University of Petroleum, East China

Abstract

Abstract Gas viscosity is an important physical property that controls and influences the flow of gas through porous media and pipe networks. An accurate gas viscosity model is essential for use with reservoir and process simulators. The objective of this study is to assess the predictability of gas viscosity of Yemeni gas fields using machine learning techniques. Performance of some machine learning techniques in the prediction of gas viscosity investigated in this work. The techniques include K-nearest neighbors (KNN), Random Forest (RF), Multiple Linear Regression (MLR), and Decision Tree (DT). About 440 data points were collected from different Yemeni gas fields were used to develop the machine-learning model. The input data used in the training include pressure, temperature, gas density, specific gravity, gas formation volume factor, gas deviation factor, gas molecular weight, pseudo-reduced temperature and pressure, pseudo-critical temperature and pressure, and non-hydrocarbon gas components (N2, CO2, and H2S). Part of the data (75%) was used to train the developed models using the algorithms while another part of the data (25%) was used to predict the viscosity of gas for samples. Trained machine learning models were constructed using the Python programming language. The performance and accuracy of the machine learning models were tested and compared their results based on four different functional input datasets. The result of this study found that that the DT model predicted the gas viscosity with higher accuracy, and gave very good results better than other models based on input parameters of the dataset (A) and (B). This was evidenced by lower the Root mean square error (0.000832), lower mean absolute percent relative error (0.042%), and higher coefficient of determination (R2=0.9465). The proposed approach in the present study provides an accurate and inexpensive model for estimating the viscosity of gases as a function of all input parameters of the dataset (A). Overall, the relative effects of these different input parameters have verified that the gas viscosity has the uppermost relevant to the gas density and specific gravity that have the highest percentage of 51%.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3