Achieving Desired Fracture Placement in a Thick and Stratified Reservoir

Author:

Jaboob M..1,Turk G.A.. A.1,Rylance M..2,Trejo R..3,Al-Shueili A..1,Al Manji A..1,Ishteiwy O.A.. A.1

Affiliation:

1. BP Oman

2. BP Exploration

3. Schlumberger

Abstract

Abstract The Barik formation is a low-permeability conventional tight-gas reservoir, in Block 61 in the Sultanate of Oman, comprised of a series of interbedded sandstone and mudstone (shale) layers. To achieve the most efficient and economic development of this formation sequence, the wells require the application of massive hydraulic fracturing. Such an approach was developed and deployed during the Appraisal stage of the programme and a considerable effort was placed in ensuring that the fracture height was contiguous, resulting in an effective drainage across all layers of the Barik formation. This approach was then encapsulated in the Full Field Development (FFD) planning Basis of Design (BoD) and was established as the approach to be taken throughout FFD. Until the field development was well underway, a single fracture treatment had proven sufficient to stimulate the entire Barik reservoir. However, as the development moved into the Southern area of the field, a substantial thickening of the Barik sequence was encountered and with this change successful complete vertical propped fracture coverage became much more challenging to achieve in an effective and repeatable manner. This paper demonstrates the approaches that were subsequently taken with the fracture design, the fracturing fluid selection and the fracture perforation strategy to address this issue and restore the achievement of complete fracture/formation coverage. Throughout the paper a number of examples will be presented that demonstrate the issues and effects that arose with the thickening of the Barik formation. The paper will then go on to examine how these effects were identified, what surveillance was used and the various characteristics that were displayed and how they were inferred. It will examine how the various issues were addressed, what changes were made to the fracturing strategy and demonstrate, through direct results, the outcomes that were subsequently achieved. This paper will focus on some of the principal issues that can arise when moving a developing fracture BoD in a laminated sequence into a more thickly developed environment with more extensive height and bulkier sands. The paper will provide a number of detailed examples of the issues themselves, and describe the detrimental and impactful effects that they may have on fracture coverage and hence well productivity and EUR. Additionally, the paper will describe the approaches that can be used in order to successfully address these effects. The paper will clearly demonstrate that when such considerations are taken into account that a successful suite of outcomes can be achieved.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3