Artificial Neural Network Models for Identifying Flow Regimes and Predicting Liquid Holdup in Horizontal Multiphase Flow

Author:

Osman El-Sayed A.1

Affiliation:

1. King Fahd U. of Petroleum and Minerals

Abstract

Summary This paper presents two artificial neural network (ANN) models to identify the flow regime and calculate the liquid holdup in horizontal multiphase flow. These models are developed with 199 experimental data sets and with three-layer back-propagation neural networks (BPNs). Superficial gas and liquid velocities, pressure, temperature, and fluid properties are used as inputs to the model. Data were divided into three portions: training, cross validation, and testing. The results show that the developed models provide better predictions and higher accuracy than the empirical correlations developed specifically for these data groups. The developed flow-regime model predicts correctly for more than 97% of the data points. The liquid-holdup model outperforms the published models; it provides holdup predictions with an average absolute percent error of 9.407, a standard deviation of 8.544, and a correlation coefficient of 0.9896.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3