Probabilistic learning approach for the liquid holdup analysis of high-viscosity intermittent flows

Author:

Guzmán J. E. V.1ORCID,González-Treviño J. A.1ORCID,Torres L.1ORCID,Aragón-Rivera F.2ORCID,Hernández-García J.3,Palacio-Pérez A.3ORCID,Klapp J.4ORCID

Affiliation:

1. Universidad Nacional Autónoma de México, Instituto de Ingeniería 1 , 04510, Mexico

2. Departamento de Matemáticas, CINVESTAV 2 , 07360, Mexico

3. Instituto de Ingeniería, Universidad Nacional Autónoma de México 3 , 04510, Mexico

4. Instituto Nacional de Investigaciones Nucleares 4 , Ocoyoacac 52750, Mexico

Abstract

A Gaussian mixture model (GMM) was implemented to investigate the relationship between the liquid holdup (in various parts of the flow) and the pressure for different experimental realizations of high-viscosity gas–liquid flows. We considered a Newtonian fluid with a constant viscosity of 6 Pa s (600 cP) under a laboratory-controlled temperature. Because the pressure and the holdup do not exhibit a clear-cut relationship in the time domain, a supervised classification algorithm and a “deep” neural network (DNN) were first applied to classify the data points and predict average holdup values. Then, the GMM was applied to determine the holdup in various liquid aggregation structures of the flow as a function of the pressure. The growth rates of the cumulative lengths of the liquid structures (i.e., slug body, mixing front, and liquid film) and the gas bubbles were obtained. The GMM predicted holdup values were in close agreement with the experimental data.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3