Model-Based Multiobjective Optimization Methods for Efficient Management of Subsurface Flow

Author:

Fu Jianlin1,Wen Xian-Huan1

Affiliation:

1. Chevron

Abstract

Summary Multiobjective optimization (MOO), which accounts for several distinct, possibly conflicting, objectives, is expected to be capable of providing improved reservoir-management (RM) solutions for efficient oilfield development because of the overall optimization of subsurface flow. Considering the complexity and diversity of MOO problems in model-based RM, we develop three MOO methods—MOAdjoint, MOGA, and MOPSO—in this work to address various oilfield-development problems. MOAdjoint combines a weighted-sum technique with a gradient-based method for solving large-scale continuous problems that have thousands of variables. An adjoint method is used to efficiently compute the derivatives of objective functions with respect to decision variables, and a sequential quadratic-programming method is used for optimization search. MOGA is a population-based method, which combines a Pareto-ranking technique with genetic algorithm (GA) to address small-scale (discrete) problems. MOPSO is another population-based method, which combines a Pareto technique with particle-swarm optimization (PSO) for a wide spectrum of optimization problems. Their advantages and disadvantages are highlighted. To take advantage of the strengths and overcome the drawbacks of these methods, a multiscale hybrid strategy is further formulated for solving complex, large-scale optimization problems by combining these methods at various scales. An example is used to compare these methods. Results show that all three methods can yield improved solutions. MOPSO seems particularly suitable for medium-scale RM problems, mainly because of its relatively fast convergence speed and efficient recovery of the Pareto front. With a proper initial guess and a set of effective weight coefficients, MOAdjoint can most efficiently solve large-scale continuous problems, particularly if model uncertainty is considered. The multiscale hybrid strategy is able to offer the best result.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3