Hybrid Framework for Enhanced Dynamic Optimization of Intelligent Completion Design in Multilateral Wells with Multiple Types of Flow Control Devices

Author:

Ahdeema Jamal1ORCID,Haghighat Sefat Morteza1ORCID,Muradov Khafiz1ORCID

Affiliation:

1. Institute of GeoEnergy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Multilateral wells (MLWs) equipped with multiple flow control devices (FCDs) are becoming increasingly favored within the oil sector due to their ability to enhance well-to-reservoir exposure and effectively handle unwanted fluid breakthrough. However, combining various types of FCDs in multilateral wells poses a complex optimization problem with a large number of highly correlated control variables and a computationally expensive objective function. Consequently, standard optimization algorithms, including metaheuristic and gradient-based approaches, may struggle to identify an optimal solution within a limited computational resource. This paper introduces a novel hybrid optimization (HO) framework combining particle swarm optimization (PSO) and Simultaneous Perturbation Stochastic Approximation (SPSA). It is developed to efficiently optimize the completion design of MLWs with various FCDs while overcoming the individual limitations of each optimization algorithm. The proposed framework is further enhanced by employing surrogate modelling and global sensitivity analysis to identify critical parameters (i.e., highly sensitive) that greatly affect the objective function. This allows for a focused optimization effort on these key parameters, ultimately enhancing global optimization performance. The performance of the novel optimization framework is evaluated using the Olympus benchmark reservoir model. The model is developed by three intelligent dual-lateral wells, with inflow control devices (ICDs) installed within the laterals and interval control valves (ICVs) positioned at the lateral junctions. The results show that the proposed hybrid optimization framework outperforms all industry-standard optimization techniques, achieving a Net Present Value of approximately USD 1.94 billion within a limited simulation budget of 2500 simulation runs. This represents a substantial 26% NPV improvement compared to the open-hole case (USD 1.54 billion NPV). This improvement is attributed to more efficient water breakthrough management, leading to a notable 24% reduction in cumulative water production and, consequently, a 26% increase in cumulative oil production.

Funder

Libyan Ministry of Higher Education and Scientific Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3