Gas Solubility Of Methane And Ethane In Cold Lake Bitumen At In Situ Conditions

Author:

Fu C.T.1,Puttagunta V.R.1,Vilcsak G.1

Affiliation:

1. Oil Sands and Hydrocarbon Recovery Department Alberta Research Council

Abstract

Abstract The vapour-liquid equilibrium properties of methane-Cold Lake bitumen and ethane-Cold Lake bitumen mixtures were measured using a modified Ruska rocking cell apparatus. Data measured at three isotherms for these two pseudo-binary systems were used to develop a predicting method by means of equations of state. Two equations of state, the modified Soave-Redlich-Kwong and the Peng-Robinson, were chosen in this study. With an appropriate choice of bitumen characterization parameters and binary interaction coefficients, both of the equations of state can adequately represent the vapour liquid equilibrium properties of the two systems studied. Binary interaction coefficients of the modified Soove-Redlich-Kwong equation of state for the two systems were determined and correlated with temperature. Introduction Methane and ethane are commonly found in native Cold Lake oil sands bitumen, and are considered as possible additives for steam-based in situ bitumen recovery methods. Thus, the phase behaviour of methane-Cold Lake bitumen and ethane-Cold Lake bitumen mixtures under in situ conditions is important for reservoir engineers to determine the recovery of bitumen from Cold Lake deposits, as well as for process engineers to develop an adequate numerical simulation model Experimental data for these two pseudo-binary systems are not reported in the literature, and therefore one of the major objectives of this study was to measure their vapour-liquid equilibrium (VLE) properties. Experimental measurements are time-consuming and costly for these bitumen-containing systems. For the purpose of data reduction it is desirable to find methods which can predict their VLE properties with high accuracy. In this investigation, two cubic equations of state were selected to represent phase equilibrium properties. These are the modified Soave-Redlich-Kwong (MSRK) equation of state(1,3) and the Peng-Robinson (PR) equation of state (4,5). A commercially available "EQUI- PHASE" software package developed by DB Robinson and Associates was applied in vapour-liquid equilibrium calculations for the PR equation of state. Calculations were also performed with the PR equation of state using bitumen characterization parameters developed by Fu et al.(10) and binary interaction coefficients determined in this paper. The VLE properties measured in our laboratory are compared to the values calculated for the two gas-bitumen systems using both equations of state. Experimental Aspects Apparatus A schematic diagram of the experimental apparatus, which was verified for VLE measurements in a previous study(7), is shown in Figure 1. It consists of a charging and discharging unit, a constant temperature bath with a rocking equilibrium cell, and a sampling and analysis unit. The heart of the apparatus is the equilibrium cell which is located in a constant temperature bath container as shown in Figure 2. During measurements, the rocking cell is driven by a motor while a stirrer circulates the oil in the bath and keeps it homogeneous. Using this design, temperature was tested up to 423.2 K with an accuracy of ± 0.01 K, and pressure was tested up to 13.8 MPa with an accuracy of ± 1.0 kPa.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3