Affiliation:
1. School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong People's Republic of China
2. Key Laboratory of Unconventional Oil and Gas Development, Ministry of Education China University of Petroleum (East China) Qingdao Shandong People's Republic of China
3. Shanghai Branch Company China National Offshore Oil Corporation People's Republic of China
Abstract
AbstractAccurately determining the solubility of ethane in oil‐based mud is crucial for assessing the severity of gas kicks and implementing appropriate well control procedures. The key factors influencing the solubility of ethane gas in oil‐based drilling fluids include the content of base oil, pressure, temperature, and the viscosity of the drilling fluid. This study aims to test the solubility of high‐purity ethane in oil‐based mud under simulated downhole conditions in a 5000 m deep well. The test covers a temperature range of 40–140°C and a partial pressure range of 0.17–5.92 MPa. The effects of temperature, pressure, base oil content, and drilling fluid viscosity on the solubility of ethane are analyzed using various experimental data processing methods. The results show that the variation in ethane solubility with pressure and temperature is nearly linear within the specified ranges. Furthermore, the impact of pressure (1.24–2.78%/MPa) on solubility is approximately 50 times greater than that of temperature (−0.013 to −0.049%/°C) in oil‐based drilling mud. Additionally, ethane's solubility decreases as the drilling fluid's viscosity increases. The ethane solubility in 80% and 90% oil‐based muds is roughly 1.6 times and 2.0 times higher than in 70% oil‐based mud under the same testing conditions. Models for predicting ethane solubility have been developed using screening procedures and statistical regression. These models can be incorporated into gas–liquid flow models to analyze flow behavior during gas kicks.
Funder
National Natural Science Foundation of China