Microtomographic Characterization of Dissolution-Induced Local Porosity Changes Including Fines Migration in Carbonate Rock

Author:

Qajar Jafar1,Francois Nicolas2,Arns Christoph H.1

Affiliation:

1. University of New South Wales

2. Australian National University

Abstract

Summary The microstructure of carbonate rocks experiences substantial changes under reactive processes, in particular chemical dissolution and deposition, including dissolution-released-fines migration occurring during acidizing. A better understanding of such changes at the pore scale and their influences on rock properties is of great value for the effective design and implementation of reactive processes in carbonate reservoirs. In this work, we demonstrate the use of X-ray micro-computed tomography (micro-CT) to quantitatively investigate the local porosity changes in a meso-/microporous carbonate core sample during chemical dissolution. A reactive flooding experiment in a core sample by a nonacidic solution is designed such that changes in pore space from before to after the reactant injection could be imaged in exactly the same locations with micro-CT at a resolution of less than 5 μm. A methodology with three-phase segmentation and 2D histograms of image intensity is used to quantify distributions of the evolution of each image voxel. This technique allows the incorporation of microporosity into the calculation of the evolution regions, including the migration of fines, to accurately quantify the evolution scenarios. The micro-CT images reveal a quasiuniform dissolution pattern and allow characterizing the accompanying migration of fines within the core sample. The 3D pore networks are derived from the image data, which quantify changes in network structure and the pore geometry. The 2D histograms of image intensity derived from the pre- and post-dissolution images show quantitatively how macro- and micropores are enlarged by dissolution close to the inlet, whereas the deposition of fines mainly occurs in pores far from the inlet boundary. These results can explain why permeability of the sample initially decreases and then increases when injection time increases. Pore-surface area between each region is computed on the basis of the spatially resolved voxel evolution scenarios. This allows calculation of local distribution of reactive surface area, which, in turn, will assist in the prediction of local reaction rates in reactive flow simulators.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3