Coupled Transport, Reactivity, and Mechanics in Fractured Shale Caprocks

Author:

Murugesu M. P.1ORCID,Vega B.1ORCID,Ross C. M.1ORCID,Kurotori T.1ORCID,Druhan J. L.2ORCID,Kovscek A. R.1ORCID

Affiliation:

1. Department of Energy Science and Engineering Stanford University Stanford CA USA

2. Department of Earth Science and Environmental Change University of Illinois at Urbana‐Champaign Urbana IL USA

Abstract

AbstractShales are low‐permeability caprocks that confine fluid, such as CO2, nuclear waste, and hydrogen, in storage formations. Stress‐induced fractures in shale caprocks provide pathways for fluid to leak and potentially contaminate fresh water aquifers. Fractured shales are also increasingly considered as resources for CO2 sequestration, enhanced geothermal, and unconventional energy recovery. Injecting reactive fluids into shales introduces chemical disequilibrium, causing an onset of a series of dissolution, precipitation, and fines mobilization mechanisms. The reactions have rapid kinetics and significant impact on porosity and permeability; consequently, flow and storage properties of caprocks. While previous research has explored the separate effects of these reactions, this study aims to uncover their simultaneous occurrence and collective influence. This study unveils these highly coupled transport and reactivity mechanisms by tracking and visualizing the reaction‐induced alterations in the matrix, microcracks, and fractures of shales over time. We conducted brine injection experiments sequentially at pH 4 and 2 in a naturally fractured Wolfcamp shale sample while simultaneously imaging the dynamic processes using X‐ray computed tomography (CT). CT images are validated by finer resolution images obtained using micro‐CT and scanning electron microscopy. We also tracked the sample permeability and fluid chemistry using brine permeability and inductively coupled plasma mass spectrometry, respectively. Findings show that fluid primarily flowed through fractures, dissolving reactive minerals and mobilizing fines on fracture surfaces. Dissolution of fracture asperities under confining stress resulted in the closing of fractures. Clogging in narrow fracture pathways, caused by fines accumulation, diverted fluid flow into matrix pores.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3