Optimization of Perforation Efficiency in the Delaware Basin Through XLE Perforating and Innovative Perforating Charge; A Case Study

Author:

Churchwell Phil1,McQueen B. Adam2,Weddle Paul M.1

Affiliation:

1. Tap Rock Resources

2. DynaEnergetics

Abstract

AbstractThis case study looked to identify a perforation design and a perforation charge that measurably increases Perforation Efficiency (PE) and reduces PE variability from stage to stage. Achieving these goals allows for more economic fracture surface area generation as well as more informed decisions toward frac design and full field development.Primarily relying on industry-standard pre-fracture Step-Down Tests (SDT) to estimate number of perforation holes open, a variety of strategies and technologies were tested by altering perforation friction, orientation, entry hole diameter (EHD), perforations per cluster (PPC), and charge type. The trial was performed across multiple horizons in the Delaware Basin, consisting of over 4,500 stages from 193 wells across 13 horizons from the 1st Bone Spring Sand to the Wolfcamp C in Lea and Eddy Counties, New Mexico.With the legacy perforation strategy and technology, the operator historically achieved a probability 50 (P50) using the cumulative distribution function (CDF) of 47% of perforations open pre-fracture. Utilizing eXtreme Limited Entry (XLE), 0 degree-oriented perforating, larger EHD, single perforation clusters, and a shaped charge which increases the reservoir contact area, the operator was able to increase the CDF P50 to 93% of perforations open pre-fracture.This straightforward trial allowed the operator to meaningfully reduce the cost of operations while type curves were met or exceeded. Contributing to the success of this field trial was a clear and restricted design of the experiment in combination with a special shale-optimized perforating charge designed for greater near wellbore reservoir contact area.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3