A Validation Assessment of Microseismic Monitoring

Author:

Warpinski N. R.1,Wolhart Steve2

Affiliation:

1. Pinnacle–A Halliburton Service

2. formerly Pinnacle—A Halliburton Service

Abstract

Abstract Microseismic monitoring of hydraulic fracturing in unconventional reservoirs is a valuable tool for delineating the effectiveness of stimulations, completions, and overall field development. Important information, such as fracture azimuth, fracture length, height growth, staging effectiveness, and many other geometric parameters, can typically be determined from good quality data sets. In addition, there are parameters now being extracted from microseismic data sets, or correlated with microseismic data, to infer other properties of the stimulation/completion system, such as stimulated reservoir volume (SRV), discrete fracture networks (DFNs), structural effects, proppant placement, permeability, fracture opening and closure, geohazards, and others. Much of the information obtained in this way is based on solid geomechanical or seismological principles, but some of it is speculative as well. This paper reviews published data where microseismic results have been validated by experiments using some type of ground-truth or alternative measurement procedure, discusses the geomechanics and seismological mechanisms that can be reasonably considered in evaluating the likelihood of inferring given properties, and appraises the uncertainties associated with monitoring and the effect on any inferences about fracture behavior. Considerable data now exist from tiltmeters, fiber-optic sensing, tracers, pressure sensors, multi-well-pad experiments, and production interference that can be used to aid the validation assessment. Relatively limited microseismic results have actually been validated in any consistent manner. Fracture azimuth from microseismic has been verified across a wide range of reservoir types using multiple techniques. Good validation of fracture length and height were performed in sandstones for planar fractures; fracture length and height in typical horizontal completions with multiple fractures or complexity have a lesser degree of verification. Other parameters, such as complexity, discrete fracture networks, source parameters, and SRV, have little supporting evidence to provide validation, even though they might have sound physical principles underlying their application. It is clear that microseismic monitoring would benefit from more attention to validation testing. In many cases, the data might be available but have not been used for validation purposes, or such results have not been published.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3